热点话题人物,欢迎提交收录!
最优雅的名人百科,欢迎向我们提交收录。
徐红星
2023-05-13 20:16
  • 徐红星
  • 徐红星 - 教授-武汉大学-物理科学与技术学院-个人资料

近期热点

资料介绍

个人简历


1992年毕业于北京大学技术物理系,获学士学位;2002年毕业于瑞典查尔莫斯理工大学物理系,获博士学位。2002年至2004年任瑞典隆德大学固体物理系助理教授。2014年调入武汉大学工作。长期从事等离激元光子学、纳米光学、单分子光谱和纳米光芯片等前沿领域的研究,做出了开创性和系统性的工作。他是单分子表面增强光谱和等离激元光子学领域的开创者之一,在实验上首次发现了金属纳米结构间隙的巨大电磁场增强效应,是超灵敏光谱传感和很多其它表面等离激元增强的光学过程的物理基础。发表论文200余篇,被引用15000余次,H因子60(Web of Science),2014-2018年连续入选中国高被引学者榜。关于单分子表面增强拉曼光谱的研究有两篇论文分别被引用1800余次(Physical Review Letters 1999, 83, 4357)和1300余次(Physical Review E 2000, 62, 4318,被选为该杂志创刊以来的里程碑论文)。他已作国际会议邀请报告70余次,作为会议主席组织了十余次著名国际学术会议。

研究领域


""Owing to the fundamental laws of diffraction, any dielectric system cannot focus light to a spot less than about half a wavelength of light (~λ/2). This diffraction limit imposes a lower limit of ~(/2)3 for the mode volume of a dielectric cavity, where is the wavelength of light inside the dielectric medium. Surface plasmons (SPs) can surpass [overcome,break]this diffraction limit by storing the electromagnetic energy partly in the kinetic energy of free electrons in conductors. This enables metallic nanostructures to concentrate light into deep-subwavelength volumes and to enhance the local density of states, which have propelled their use in a vast array of nanophotonics technologies and research endeavours[it has propelled use in a vast array of nanophotonics technologies and research endeavours because of the unprecedented abilities of nanometallic (that is, plasmonic) structures to concentrate light into deep-subwavelength volumes and to largely enhance the local density of states.]. After a rapid development in the past decades, plasmonics is now covering a broad range of branches, including information technology, biological/chemical sensing, medical therapy, renewable energy, and super-resolution imaging, etc.""""

近期论文


Sun, J.; Hu, H.; Pan, D.; Zhang, S.; Xu, H., Selectively Depopulating Valley-Polarized Excitons in Monolayer MoS2 by Local Chirality in Single Plasmonic Nanocavity. Nano Letters 2020, 20 (7), 4953-4959.\r
\r
Dai, W.; Liu, W.; Yang, J.; Xu, C.; Alabastri, A.; Liu, C.; Nordlander, P.; Guan, Z.; Xu, H., Giant photothermoelectric effect in silicon nanoribbon photodetectors. Light: Science & Applications 2020, 9 (120).\r
\r
Wei, W.; Zhang, J.; Wang, J; Cong, H.; Guo, J.; Wang, Z.; Xu, H.; Wang, T.; Zhang, J., Phosphorus-free 1.5 microm InAs quantum-dot microdisk lasers on metamorphic InGaAs/SOI platform. Opt Lett 2020, 45 (7), 2042-2045.\r
\r
Li, Y.; Hu, H.; Jiang, W.; Shi, J.; Naomi, J.; Peter, N.; Zhang, S.; Xu, H., Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy. Nano Letters DOI: 10.1021/acs.nanolett.0c00434.\r
\r
Ou, Z.;Wang, T.; Tang, J.; Zong, X.; Wang, W.; Guo, Q.;Xu, Y.;Zhu, C.; Wang, L.; Huang, W.; Xu, H., Enabling and Controlling Negative Photoconductance of FePS3 Nanosheets by Hot Carrier Trapping. Advanced Optical Materials 2020, 8 (10), 2000201.\r
\r
Jiang, W.; Hu, H.; Deng, Q.; Zhang, S.; Xu, H., Temperature-dependent dark-field scattering of single plasmonic nanocavity. Nanophotonics 2020.\r
\r
Li, Y.; Hu, H.; Jiang, W.; Shi, J.; Naomi, J.; Peter, N.; Zhang, S.; Xu, H., Duplicating Plasmonic Hotspots by Matched Nanoantenna Pairs for Remote Nanogap Enhanced Spectroscopy. Nano Letters 2020.\r
\r
He, X.; Tang, J.; Hu, H.; Shi, J.; Guan, Z.; Zhang, S.; Xu, H., Electrically Driven Optical Antennas Based on Template Dielectrophoretic Trapping. ACS Nano 2019, 13 (12), 14041-14047.\r
\r
Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguie, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G.; Choo, J.; Cialla-May, D.; Deckert, V.; Fabris, L.; Faulds, K.; Garcia de Abajo, F. J.; Goodacre, R.; Graham, D.; Haes, A. J.; Haynes, C. L.; Huck, C.; Itoh, T.; Kall, M.; Kneipp, J.; Kotov, N. A.; Kuang, H.; Le Ru, E. C.; Lee, H. K.; Li, J. F.; Ling, X. Y.; Maier, S. A.; Mayerhofer, T.; Moskovits, M.; Murakoshi, K.; Nam, J. M.; Nie, S.; Ozaki, Y.; Pastoriza-Santos, I.; Perez-Juste, J.; Popp, J.; Pucci, A.; Reich, S.; Ren, B.; Schatz, G. C.; Shegai, T.; Schlucker, S.; Tay, L. L.; Thomas, K. G.; Tian, Z. Q.; Van Duyne, R. P.; Vo-Dinh, T.; Wang, Y.; Willets, K. A.; Xu, C.; Xu, H.; Xu, Y.; Yamamoto, Y. S.; Zhao, B.; Liz-Marzan, L. M., Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2019, 14 (1), 28-117.\r
\r
Guo, Q.; Fu, T.; Tang, J.; Pan, D.; Zhang, S.; Xu, H., Routing a Chiral Raman Signal Based on Spin-Orbit Interaction of Light. Physical Review Letters 2019, 123 (18).\r
\r
Zhang Y.; Chen W.; Fu T.; Sun J.; Zhang D.; Li Y.; Zhang S.; Xu H., Simultaneous Surface-Enhanced Resonant Raman and Fluorescence Spectroscopy of Monolayer MoSe2: Determination of Ultrafast Decay Rates in Nanometer Dimension. Nano Letters 2019, 19 (9), 6284-6291.\r
\r
Zheng, D.; Li, Y.; Chen, W.; Fu, T.; Sun, J.; Zhang, S.; Xu, H., The novel plasmonics-transition metal dichalcogenides hybrid nanostructures. SCIENTIA SINICA Physica, Mechanica & Astronomica 2019, 49 (12), 124205.\r
\r
Shi, J.; Li, Y.; Kang, M.; He, X.; Halas, N. J.; Nordlander, P.; Zhang, S.; Xu, H., Efficient Second Harmonic Generation in a Hybrid Plasmonic Waveguide by Mode Interactions. Nano Letters 2019, 19 (6), 3838-3845.\r
\r
Liu, Y.; Tian, X.; Guo, W.; Wang, W.; Guan, Z.; Xu, H., Real-time Raman detection by the cavity mode enhanced Raman scattering. Nano Research 2019, 12 (7), 1643-1649.\r
\r
Liu, W.; Wang, W.; Guan, Z.; Xu, H., A plasmon modulated photothermoelectric photodetector in silicon nanostripes. Nanoscale 2019, 11 (11), 4918-4924.\r
\r
Yang, D.-J.; Zhang, S.; Im, S.-J.; Wang, Q.; Xu, H.; Gao, S., Analytical analysis of spectral sensitivity of plasmon resonances in a nanocavity. Nanoscale 2019, 11, 10977-10983.\r
\r
He, X.; Tang, J.; Hu, H.; Shi, J.; Guan, Z.; Zhang, S.; Xu, H., Electrically Driven Highly Tunable Cavity Plasmons. ACS Photonics 2019, 6 (4), 823-829.\r
\r
Hu, H.; Zhang, S.; Xu, H., Closely packed metallic nanocuboid dimer allowing plasmomechanical strong coupling. Physical Review A 2019, 99 (3), 033815.\r
\r
Li, Q.; Pan, D.; Wei, H.; Xu, H., Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire. Nano Letters 2018, 18 (3), 2009-2015.\r
\r
Gao, L.; Chen, L.; Wei, H.; Xu, H., Lithographically fabricated gold nanowire waveguides for plasmonic routers and logic gates. Nanoscale 2018, 10 (25), 11923-11929.

相关热点

扫码添加好友